
How Should We Evaluate
Hash Submissions?

John Kelsey, NIST
5/25/2007

*Invited Talk to ECRYPT Hash Workshop 2007

Context: AHS

• NIST is running a hash competition
• Submissions probably due around

August 2008
– About one year from call for submissions

• We want to work out how to evaluate
submissions

• SHA2 hashes to remain as standard

Context: Don’t Break Stuff

Lots of standards already use hashes
• Often many implicit assumptions:

– Damgaard-Merkle, 512-bit message block,
160-bit hash value, etc.

• Assume it just randomizes everything
– This is imprecise and often wrong, but it’s

still what people have done
• We don’t want new hash to break stuff

that’s not currently broken.

Context: What we have to do

• We want to:
– Get a good hashing standard
– Advance the state of the art
– Get something that works with existing

uses of hashes
• We have limited resources

– Small staff of cryptographers
– Lots of other stuff to do

How to Evaluate AHS?
• Performance

– Desktop / smartcard / server / hardware /
parallelism

– How much weight should performance have?
• Formal/Informal Security Requirements

– What do we ask from hash functions?
– How does this affect submissions?

• Cryptanalysis
– This is the scarce resource
– “How do I know what’s an attack?”

• Scaling
– How will this process scale with # of submissions?

Problem #1:
Requirements on Hash

• Many comments on this
– Especially about “like a random oracle”
– Great comments from IBM and MIT

• We’ve been looking at our standards
and how hashes are used
– This is the tip of the iceberg, but it gives us

a minimal set of requirements

Requirements (2)
What we know we need

• Support existing digital signature stds
– 2n bit hash has n bits of collision

resistance
– Can’t rely on randomization for security

• HMAC as a PRF
– This is used too widely for us to break it

• Avoiding dumb design flaws and
“gotchas” (aka pitchforks, landmines)
– No length-extension bug
– Can truncate without breaking collision resistance

Requirements(3)
Formal definitions we need

• Some way to support HMAC
– Maybe as a mode of operation

• Also need (maybe via HMAC)
– PRF (key never known)
– Randomized hashing (key known after hash)
– “Computational universal hash”

• Looks like collision resistance to me
– Extractor (for KDFs, entropy distillation)

• What about side channels?

Requirements (4)
How do we get these things?

Require from each hash submission
• HMAC support

– How to do HMAC
– Argument, proof, other evidence that this

gives good PRF
• Constructions (maybe HMAC) for

– PRF, randomized hashing, MAC
• Arguments / constructions for

– Extractor, universal hash, whatever else

Requirements (5)
The R word

• Okay, so we can’t build a random oracle
– And neither can any of the submitters

• How should we describe the property of
“don’t surprise me?”
– Don’t know anything about F(x) till you compute it?
– Some pseudorandomness/game sort of definition?
– “I can’t define it, but I know it when I see it?”

Problem: people use hashes like they’re ROs

Cryptanalyzing Submissions
and Security Proofs

• How should we weight flaws in
submission documents?
– Invalid or flawed proofs
– Statements that can be falsified, but don’t

break the hash?
– Anything else?

Requirements Wrapup

• Must support DSA/ECDSA and HMAC
• Must be able to give us

– PRF, MAC, randomized hash
• Explain / argue why okay as

– Extractor
• Must behave in a random way (yuck!)
• Mustn’t break existing nonbroken uses

Performance (1)

• Platform
– Software:

Desktop, server, smartcard, embedded
– Hardware:

Speed (accelerators), gate count, power usage
• Parallelizability

– Iterated structure imposes limits
– Maybe a “modes of operation” issue?

• Submission:
– Ask for any guidance on parallelizeability

Performance (2)

• We know we need:
– Online (one-pass)
– Speed not totally out of line with SHA256

• We don’t know:
– How to weight provably secure designs
– How to measure/consider security margins

We don’t want to encourage barely-
secure designs!

Evaluation and Performance

• Big potential problem:
– Once all attacked hashes out of

competition, only hard numbers are for
performance

– How to keep these from dominating?
• Ideas?

Cryptanalysis
This is the scarce resource for the competition!
• Do we know what we’re doing attacking hash

functions?
– State of the art is not stable!
– Good representations, tools, building on others’

analysis
• Can we clearly define what qualifies as an

attack?
– Models

Cryptanalysis (2)
• Judging from AES history:
• Low-hanging fruit

– Cookbook application of attacks
– Very simple attacks
– Designers didn’t understand attacks or

made some kind of error
• Good submissions

– Each attack is a one-off by a talented
craftsman

– Not uncommon to spend a year or more
working on an attack

Cryptanalysis: How do we
decide what is an attack?

• Models
– Random Oracle (too hard)
– Sponge (generalization of iterated hash)
– Collision resistance/preimage resistance
– “Don’t surprise me” (too informal)

• We don’t need to specify everything that
will count as an attack up front
– But important that cryptanalysts know what

is and is not meaningful--no 295 attacks on
DES, please!

Cryptanalysis: How Secure is
Enough?

• We need n bit hash to require 2n/2 to
collide

• What about preimage and 2nd
preimage?

• Long message 2nd preimage attack?
• Bounds on PRF security?
When n=256, does a 2240 second

preimage attack matter?

Cryptanalysis:
Automated Testing

• Good news is it’s cheap
– One-time cost to code up tests
– Needs a programmer, not a cryptanalyst

• Bad news is, it’s pretty limited
– Statistical tests ought to catch disasters
– Maybe other ideas can help

• Could use as metric of sorts
– How many rounds till pass stat tests
– Not clear how to interpret this, though
– Very unclear how to weight security vs.

performance

Cryptanalysis: Other Thoughts
• One big cost to crytptanalyze something is

understanding it
– Takes time even for simple algorithms (Rijndael)
– Much worse for complex algorithms (MARS)

• Sometimes need tools to even start analysis
(SHA)

• Good explanation of algorithm, pictures, etc.
is very valuable!
– How do we encourage submitters here?
– What should we (NIST, crypto community) do?

Compression Function vs.
Chaining Mode

• Maybe not same people good at designing
these
– Chaining modes--security proof people
– Compression function--analysis and design
– Examples mostly support this!

• Resource limits: No way we do two!
• Some compression functions adapted to

mode
– HAIFA, RadioGatun, Salsa20

My thought: New chaining mode w/o reduction
proof will have a hard life….

Scaling of Competition
• How Many Submissions Will We Get?

– In range of 15-20, not too bad
– If we got 50, how would we cope?

• AES as an example
– 15 submissions
– Several eliminated right away
– Others had performance issues
– Maybe half might have made it

• Low hanging fruit
– Time spent killing weak submissions isn’t spent

analyzing the strong ones.

Discussion: Requirements
• Digital signature compatibility

– DSA/ECDSA need n-bit hash with 2n/2

collisions
• HMAC compatibility

– How much flexibility for submission?
– Must they all be iterated? (Sponge)
– PRF / MAC / universal hash

• Other requirements?
– Randomization? Extractors?

• Require proof or argument?

Discussion: Evaluation
• Driven by requirements

– How does flawed proof/argument in
submission affect submission?

• Define a model to attack
– Clear explanation
– Attacker and submitter must be able to

agree on what an attack looks like
• Cryptanalysis is the scarce resource

– How do we get more?
– How do we encourage it?

Discussion: Other Criteria

• Modes of operation vs. compression
function

• Performance requirements
– Speed
– Platforms
– Parallelism

Discussion: Scaling Problems

• Question: How many submissions are
we likely to get?
– Process very different for 10 submissions

than 100
• Large number of submissions

– Need filtering of bad submissions early
– Need more barriers to entry

• Small number of submissions
– Can spend more time on each submission

